Preparation and Doping Mode of Doped LiMn2O4 for Li-Ion Batteries
نویسندگان
چکیده
منابع مشابه
Cycling behaviour of barium doped LiMn2O4 cathode materials for Li ion secondary batteries
In order to improve the cycling performance of LiMn2O4, the spinel phase LiMn2–xBaxO4 (x = 0.01, 0.02 and 0.05) compounds were fabricated by the glycine-nitrate method. The structures of the products were investigated by X-ray diffraction. Electrochemical studies were carried out using the Li|LiMn2O4 and Li|LiMn2–xBaxO4 cells. The capacity loss of Li|LiMn2O4 cell is about 15% after 30 cycles, w...
متن کاملDoping-induced memory effect in Li-ion batteries: the case of Al-doped Li4Ti5O12.
In Li-ion batteries (LIBs), a memory effect has been revealed in two-phase electrode materials such as olivine LiFePO4 and anatase TiO2, which complicates the two-phase transition and influences the estimation of the state of charge. Practical electrode materials are usually optimized by the element doping strategy, however, its impact on the memory effect has not been reported yet. Here we fir...
متن کاملLiMn2O4 as a Li-Ion Battery Cathode
Eriksson, T. 2001. LiMn2O4 as a Li-Ion Battery Cathode. From Bulk to Electrolyte Interface. Acta Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 651. 53 pp. Uppsala. ISBN 91-554-5100-4. LiMn2O4 is ideal as a high-capacity Li-ion battery cathode material by virtue of its low toxicity, low cost, and the high natural abundance ...
متن کاملElectrochemical Investigations of Cobalt-Doped LiMn2O4 as Cathode Material for Lithium-Ion Batteries
A wide range (y = 0.05—0.33) of Co-doped LiCo5Mn2_504 spinels were synthesized and electrochemically characterized. These Co-doped spinels showed improved specific capacity and capacity retention over pure spinels. Electrochemical impedance spectroscopy and the linear polarization resistance technique were used to determine the transport and electrochemical kinetic parameters of Co-doped spinel...
متن کاملUltrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries.
Ultrathin LiMn(2)O(4) nanowires with cubic spinel structure were synthesized by using a solvothermal reaction to produce α-MnO(2) nanowire followed by solid-state lithiation. LiMn(2)O(4) nanowires have diameters less than 10 nm and lengths of several micrometers. Galvanostatic battery testing showed that LiMn(2)O(4) nanowires deliver 100 and 78 mAh/g at very high rate (60C and 150C, respectivel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energies
سال: 2013
ISSN: 1996-1073
DOI: 10.3390/en6031718